Prophylactic and Curative Effects of Thymoquinone against CCL₄-Induced Hepatotoxicity in Rats

H. Khither¹*, W. Sobhi¹, A. Mosbah¹ and M. Benboubetra¹

¹Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas Setif 1 University, Setif 19000, Algeria.

Authors’ contributions

This study was carried out in collaboration between all authors. Author MB designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors HK, WS and AM managed the analyses of the study and managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

Background: Natural products from medicinal plants such as thymoquinone (TQ), the major compound derived from Nigella sativa L. Which has received considerable attention in recent years due to its diverse pharmacological properties, including antioxidant and anti-inflammatory activities. The aim of this study is the investigation of prophylactic and curative effects of TQ against carbon tetrachloride (CCL₄)-induced hepatotoxicity in male albino rats.

Materials and Methods: Hepatotoxicity was induced in rats by intraperitoneal administration of 3 ml/kg, 1:1 (V/V) mixture of CCL₄ and olive oil both before and after treatment for 7 days with TQ. Prophylactic and curative effects of TQ were evaluated by estimating the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP).

Results: CCL₄ administering by intraperitoneal injection led to significant (P<0.05) increase in serum transaminases (ALT and AST) and phosphatase (ALP) respectively compared with control animals. Thymoquinone showed significant (p<0.05) hepatoprotective activity by decreasing the activities of ALT, AST, ALP in both prophylactic and curative effects. These results revealed that thymoquinone possesses significant hepatoprotective and hepatocurative effects against

*Corresponding author: E-mail: h.khither@yahoo.fr;
CCl₄-induced toxicity via its antioxidant and anti-inflammatory activities but the hepatocurative effect was the most effective.

Conclusion: Thymoquinone is a compound known for its pharmacological properties. We illustrated in this work, its important effect against hepatotoxicity induced by a toxic agent as CCl₄ when it’s administrated in prophylactic or curative way.

Keywords: Thymoquinone; carbon tetrachloride; hepatotoxicity; prophylactic effect; curative effect; hepatic markers.

1. INTRODUCTION

Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa [1]. It is a member of bioflavonoid with antioxidant, anti-inflammatory, antidiabetic, neuroprotective, and anti-arthritic properties [2,3,4,5,6]. Hepatotoxicity induced by carbon tetrachloride (CCl₄), is widely used for modeling liver injury in rats [7]. Because it is the principal site for CCl₄ biotransformation, the hepatotoxicity of CCl₄ is the result of cytochrome P-450-dependent reductive dehalogenation to form a highly reactive trichloromethyl free radical, CCl₃• [8]. The aim of this research was to evaluate the in vivo effects of TQ and to investigate its prophylactic and curative effects on hepatotoxicity induced by CCL₄.

2. MATERIALS AND METHODS

2.1 Chemicals

Thymoquinone, carbon tetrachloride (CCl₄) and formaldehyde were purchased from Sigma Aldrich.

2.2 Experimental Animals

Fifty-six male Wistar albino rats (200–250 g) were purchased from the Animal House of Pastor institute Alger, Algeria. The animals were acclimatized for one week and maintained under standard conditions of temperature (22 ± 2°C), and 12 hours light/dark cycle. The rats were fed with a standard diet and water.

2.3 Induction of Hepatotoxicity

The induction of hepatotoxicity was based on the procedure described by Wang et al. [9] with slight modification, the albino rats were randomly divided into eight treatment groups of seven rats per group as follows:

- **Group I** (normal control): received physiological water (3 ml/kg).
- **Group II** received physiological water with 0.1% of tween80.
- **Group III** received physiological water (3 ml/kg). On the seventh day, animals were administered olive oil (3 ml/kg).
- **Group IV** received physiological water (3 ml/kg). On the seventh day, animals were injected with a fresh mixture of CCl₄, and olive oil (3 ml/kg, V:V).
- To evaluate the potent hepatoprotector effect of thymoquinone, we have designed the following experimental scheme:
 - **2.3.1 Prophylactic effect**
 - **Group V** pre-treated with TQ at a dose of [2.5 mg/kg/day] dissolved in 0.1% of tween80.
 - **Group VI** pre-treated with TQ at a dose of [05 mg/kg/day] dissolved in 0.1% of tween80.

On the seventh day, animals were injected with a fresh mixture of CCl₄, and olive oil (3 ml/kg, V:V), half an hour after the administration of the last dose of the pre-treatment TQ.

- **2.3.2 Curative effect**

On the first day, animals were injected with a fresh mixture of CCL₄, half an hour before the administration of the first dose of TQ.

- **Group VII** treated with TQ at a dose of [2.5 mg/kg/day] dissolved in 0.1% of tween80.
- **Group VIII** treated with TQ at a dose of [05 mg/kg/day] dissolved in 0.1% of tween80.

All the treatments were administered by oral gavage for 7 days. After 24 hours, the animals were sacrificed under diethyl ether anesthesia by cervical dislocation Blood samples were collected from the retro-orbital sinus of the eye by ocular puncture into heparinized tubes for biochemical analyses. Serum was separated by
centrifugation at 3,000 rpm for 10 min., at 4°C. Rat livers were quickly excised and perfused with chilled 1.15% (w/v) KCl solution in order to remove all traces of haemoglobin. The livers were blotted dry, weighed and a portion was used to prepare homogenate and stored at -80°C pending analysis while the remaining parts were preserved in 10% formalin saline for histopathological analysis.

2.4 Assay of Liver Marker Enzymes

Liver enzymes- alanine, and aspartate aminotransferases (ALT and AST), and alkaline phosphatase (ALP), were assayed using spinreact diagnostic kits with a Bechaman auto analyzer at the biochemistry laboratory of Setif anti-cancer centre, Algeria. Hepatoprotective activity of TQ was calculated according to the formula of Singh et al. [10].

\[
\text{Hepatoprotective activity (\%)} = 1 - \frac{[\text{TC} - \text{N}]}{[\text{C} - \text{N}]} \times 100
\]

Where TC, C, and N are the measurable variables in rats treated with TQ plus CCl₄, CCl₄, and normal animals respectively.

2.5 Histopathological Examination

Livers of rats from different groups perfused with 10% neutral formalin solution were dehydrated and embedded in paraffin. Paraffin sections were made and stained using hematoxylin-eosin [11]. The stained sections were examined under a microscope for histopathological changes in liver architecture, and their photomicrographs were carried out in the pathology laboratory of Setif University Hospital, Algeria.

2.6 Statistical Analysis

The data obtained were analyzed using one-way analysis of variance (ANOVA), followed by Tukey’s test for all parameters and expressed as mean ± SEM. The p-value < 0.05 was considered statistically significant.

3. RESULTS

3.1 Biomarkers of Liver Function

The effects of pre-treatment with TQ on serum AST, ALT and ALP activities in CCl₄-intoxicated rats are shown in Table 1. Intoxication of rats with CCl₄ caused hepato-cellular damage as shown by significant elevation (p < 0.05), in the activities of serum AST (16, 42 times / 1542.20%), ALT (22.87 Times / 2187.69%), and ALP (1.70 times / 69.84%), compared to control. However, pre-treatment of rats with TQ for 7 days (at both 2.5 mg and 05 mg/kg b. wt), protected the rats against CCl₄-induced hepatotoxicity by reductions in the activities of the hepatic enzymes in the serum. Pre-treatment with 2.5 mg / kg b. wt. of TQ decreased AST, ALT and ALP activities by 89.94%, 87.80% and 23.08%, respectively. Similarly, pre-treatment of rats with 05 mg/ kg b. wt. of TQ decreased these enzymes by 91.39%, 89.31% and 27.06%, respectively. Thus, the hepatoprotective effect percentage (%) of both Pre-treatments with 2.5 and 05 mg/ kg b. wt were illustrated in Table 2.

While, treatment of rats with TQ for 7 days (at both 2.5 mg and 05 mg /kg b. wt), treated the rats against CCl₄-induced hepatotoxicity by significant reductions in the activities of the hepatic enzymes in the serum. Treatment with 2.5 mg / kg b. wt. of TQ decreased AST, ALT and ALP activities by 94.77%, 97.19% and 25.23%, respectively. Similarly, treatment of rats with 05 mg/ kg b. wt. of TQ decreased these enzymes by 94.86%, 98.27% and 37.38%, respectively. Thus, the hepatocurative effect percentage (%) of both treatments with 2.5 and 5 mg/ kg b. wt were illustrated in Table 2.

3.2 Histopathology

The photomicrographs obtained from the histopathological examination are depicted in Fig. 1. Liver sections from normal control rats revealed normal architecture. Livers of CCl₄-treated rats showed abnormal architecture with severe congestion, extensive necrosis of hepatocytes, oedema, areas of fatty change (steatosis) and diffuse inflammatory cells infiltration including mononuclear, polymuclear and histioyte. Pre-treatment with 2.5 mg and 5 mg/kg reduced the severity of hepatic damage as shown by the mild and few inflammatory cells infiltration with less necrosis and fewer cells infiltration, respectively. While, Treatment with 2.5mg and 5 mg/kg showed nearly normal architecture of liver tissue back to the elimination of all hepatic damage except only less congestion with treatment by 2.5 mg/kg.
Table 1. Serum levels of liver enzymes following different treatments (n=7)

<table>
<thead>
<tr>
<th>Treatment (mg/kg)</th>
<th>AST (U/L)</th>
<th>ALT (U/L)</th>
<th>ALP (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>109.00 ± 7.94**</td>
<td>57.7 ± 6.12***</td>
<td>126 ± 4.00</td>
</tr>
<tr>
<td>TQ (2.5 mg/kg) + CCl4</td>
<td>180.00 ± 33.4***</td>
<td>161 ± 25.3***</td>
<td>164.6 ± 3.70</td>
</tr>
<tr>
<td>TQ (5 mg/kg) + CCl4</td>
<td>154.00 ± 13.1***</td>
<td>141 ± 31.3***</td>
<td>156.1 ± 17.50</td>
</tr>
<tr>
<td>CCl4 + TQ (2.5 mg/kg)</td>
<td>93.60 ± 7.30***</td>
<td>37.1 ± 2.84***</td>
<td>160 ± 11.3</td>
</tr>
<tr>
<td>CCl4 + TQ (5 mg/kg)</td>
<td>92.00 ± 5.04***</td>
<td>22.9 ± 9.34***</td>
<td>134 ± 15.1</td>
</tr>
<tr>
<td>CCl4 Only</td>
<td>1790 ± 97.1</td>
<td>1320 ± 93.7</td>
<td>214 ± 27.7</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SEM (n = 7).

* Significant difference (*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001) against CCl4 treated group.

Experiments were performed three times and analysis for each experiment was carried out in triplicates.
Fig. 1. Photomicrographs of the liver tissue from rats treated with TQ x 100
A: (CCL₄ Only): Severe congestion, extensive necrosis, edema, B: (CCL₄ Only) severe mononuclear, histiocyte and polynuclear infiltration. C: (2.5 mg/kg TQ + CCL₄): Necrosis and inflammatory cells infiltration. D: (2.5 mg/kg TQ + CCL₄): Less mononuclear and histiocytes infiltration E: (CCL₄ + 2.5 mg/kg TQ): Less congestion. F: (CCL₄ + 5 mg/kg TQ): Normal tissue. G: (Control): Normal liver architecture

Table 2. Hepatoprotective and hepatocurative activities of TQ against CCl₄-induced toxicity in rats

<table>
<thead>
<tr>
<th>% Treatment</th>
<th>Liver function indicator</th>
<th>AST</th>
<th>ALT</th>
<th>ALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatocurative</td>
<td>CCl₄ + TQ (2.5 mg/kg)</td>
<td>100.92</td>
<td>101.63</td>
<td>61.36</td>
</tr>
<tr>
<td></td>
<td>CCl₄ + TQ (5 mg/kg)</td>
<td>101.01</td>
<td>102.76</td>
<td>90.91</td>
</tr>
<tr>
<td>Hepatoprotective</td>
<td>TQ (2.5 mg/kg) + CCl₄</td>
<td>95.78</td>
<td>91.82</td>
<td>56.14</td>
</tr>
<tr>
<td></td>
<td>TQ (5 mg/kg) + CCl₄</td>
<td>97.32</td>
<td>93.40</td>
<td>65.80</td>
</tr>
</tbody>
</table>

TQ + CCl₄: Hepatoprotective effect % and CCl₄ + TQ: Hepatocurative effect %

4. DISCUSSION
CCl₄ induced liver injury in rats by its biotransformation by cytochrome P450 system to highly reactive trichloromethyl free radicals (CCl₃•), which reacted rapidly with molecular oxygen to produce the trichloromethyl peroxyl (CCl₃O₂•). This highly toxic radical is responsible for attacks on unsaturated fatty acids of phospholipids present in the cell membrane, leading to lipid peroxidation in the liver cells, disrupts Ca²⁺ homeostasis, and eventually kills
cells [12,13], which, initiated liver cell destruction [14], increased plasma levels of hepatic enzymes (AST, ALT and ALP). These enzymes are released into the circulation following to cellular breakdown.

This study is the first one to determine hepatoprotective together with hepatocurative effects of TQ against CCL4 toxicity. The previous experimental studies have shown that treatment with CCL4 led to an increase in serum levels of AST, ALT and ALP [15,16,17,18]. The hepatotoxicity of CCL4 was confirmed in our study by significant increases of serum levels of AST, ALT and ALP by 16, 42 times, 22.87 times and 1.70 times, respectively.

After treatment of rats with TQ the results showed significant decreases in activities of the liver enzymes in both prophylactic and curative effects, hepatocurative effect was the most effective because it decreased the enzymes to levels approaching the normal values. This is an indication of the stabilization of the plasma membrane and the repair of hepatic tissue damage caused by CCL4. Thus, The hepatocurative effect with 5 mg/ kg b. wt of TQ was the most effective among the doses used.

The histopathological assessment revealed significant histological changes in the liver tissue of rats treated with CCL4-induced liver lesions such as fatty degeneration (steatosis i.e. accumulation of triglycerides in the liver), oedema and necrosis [19]. Our findings were consistent with previous reports on CCL4 induced hepatotoxicity. However, histological section of the liver tissue of rats pretreated with TQ showed moderate improvement of the liver lesions compared to the CCL4 treated group suggesting the moderate hepato-protective effect of TQ. While, treatment with TQ led to marked structural improvement approaching the normal architecture of the liver damage compared to the CCL4 treated group suggesting its significant hepatocurative effect.

Thus, quantitative measurements of plasma levels of liver enzymes, together with a histopathological examination of hepatocytes provide a good assessment of the extent of liver damage or regeneration when TQ challenged with CCL4. We suggest that the reason behind this is the antioxidant and anti-inflammatory activities of TQ, which blocked at least partly, the effect of released free radicals by CCL4 which led to lipid peroxidation and hence membrane destabilization and eventually liver cell injury by its significant upregulation of antioxidant Systems [20], superoxide scavenging and anti-lipid peroxidation [21,22], in part, and eicosanoid generation, namely thromboxane B2 and leucotriene B4. Therefore, the effect of thymoquinone on thromboxane B2 generation could be a contributing factor to its possible hepatoprotective and hepatocurative effects [22,23].

5. CONCLUSION

The present study demonstrated that TQ had an excellent curative effect against hepatotoxicity induced by CCL4 with an important prophylactic effect. Both prophylactic and curative effects of thymoquinone may be explained by its antioxidant and anti-inflammatory properties which were well documented in several studies.

CONSENT

It is not applicable.

ETHICAL APPROVAL

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Public Health of Algeria (INSP). The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Ferhat Abbas–Setif 1.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the University of Setif 1. Research was performed in the Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Setif 1, Setif 19000, Algeria.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

