The Hypolipidemic Effect of Aqueous Extract of *Hibiscus sabdariffa* on Paracetamol-induced Hepatotoxicity in Albino Wistar Rats

E. B. Umoren¹*, J. F. Ekpenyong², O. E. Oyama³ and A. O. Obembe³

¹Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
²Department of Zoology and Environmental Biology, Faculty of Sciences, University of Calabar, Calabar, Nigeria.
³Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. Author AOO designed the study. Author JFE performed statistical analysis. Author EBU wrote the first draft and final manuscript. Author OEO proofread the final work. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJMP/2020/v31i730254

Editor(s):
(1) Dr. N. Karmegam, Government Arts College, India.
(2) Professor, Marcello Iriti, University of Milan, Italy.

Reviewers:
(1) A. E. Akpakpan, Akwa Ibom State University, Nigeria.
(2) Evelyn Sharon Sukumar, SRM College of Pharmacy, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/55530

Received 24 January 2020
Accepted 28 March 2020
Published 05 May 2020

Original Research Article

ABSTRACT

Aim of the Study: This study was undertaken to ascertain if *Hibiscus sabdariffa* extract can affect the lipid profile (Total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), very low density lipoprotein (VLDL), and low density lipoprotein (LDL)) levels in a paracetamol-induced hepatotoxicity using albino Wistar rat as a model.

Materials and Methods: Thirty (30) rats used for this study were divided into three groups. Group A (n=10) served as control. Group B (n=10) was administered paracetamol only at a dose of 750 mg/kg body weight. Group C (n=10) was administered paracetamol (dose 750 mg/kg body weight) and aqueous extract of *H. sabdariffa* (dose 10 ml/kg body weight) of the animal for 3 weeks. All animals were allowed free access to clean drinking water and normal rat chow.

Results: Results of the study revealed that TC was significantly lower (p<0.05) in the paracetamol + *H. sabdariffa*-treated group as compared to paracetamol-treated group and control respectively.

*Corresponding author: E-mail: lizzyumoren@yahoo.com, eumoren@pums.edu.ng;
Similar trend was observed with TG, VLDL-c, LDL-c and HDL-c. However, the decrease in HDL-c was not statistically significant when compared to control.

Conclusion: The presence of bioactive constituents vis; anthocyanins, flavonoids, polyvenols and free radical scavenging properties in *H. sabdariffa* enabled a hypolipidemic effect on the animals by lowering the levels of serum TG, VLDL-c, LDL-c despite challenge on the liver. However, it was unable to produce significant effect on HDL concentration -very important cholesterol required in high level to maintain homeostasis inside the body. This may be due to the challenge on the liver as a result of the paracetamol abuse.

Keywords: Paracetamol; hepatotoxic; Hibiscus sabdariffa; lipid profile; albino wistar rats.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>TC</th>
<th>Total Cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very Low Density Lipoprotein</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>VLDL-c</td>
<td>Very Low Density Lipoprotein Concentration</td>
</tr>
<tr>
<td>LDL-c</td>
<td>Low Density Lipoprotein Concentration</td>
</tr>
<tr>
<td>HDL-c</td>
<td>High Density Lipoprotein Concentration</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of Mean</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

Hibiscus sabdariffa L. also known as Roselle is an ideal crop for developing countries, and it is widely grown in Central and West Africa and South East Asia [1]. The calyces and dried leaves of *H. sabdariffa* L. can be used for various purposes in different countries and some of the uses include: culinary use – in the preparation of herbal drinks/ tea, fermented drinks, wine, flavoring agents, chocolates, jam and cake. In Nigeria and Sudan, the dried calyces are boiled with sugar to make a popular drink known as “Zobo” or “Kakade” [2].

Several studies, both *in vitro* [3,4] and *in vivo* [5,6] have shown that the extract of *H. sabdariffa* L. has a potent antioxidant effect. The antioxidant activity of the extract is due to its strong scavenging effect on reactive oxygen and free radicals [6,7].

The aqueous extract of the red and green *H. sabdariffa* has also been reported to cause significant decrease in the LDL-c levels, while no significant effect was observed in HDL-c and Triglyceride levels [8].

H. sabdariffa has been documented to possess cardioprotective properties [9], hypocholesteromic, antioxidative, hepatoprotective qualities in animals [10,11]. The aqueous extract of *H. sabdariffa* has shown antioxidant activity than ascorbate due to anthocyanins present in its petals [12].

Recently, our laboratory studies have shown that despite the free radical scavenging property and presence of natural antioxidants in *H. sabdariffa*, these effects could not ameliorate the challenge on the liver due to paracetamol abuse in rats [13]. Based on this finding, it became expedient to investigate further to know if the aqueous extract of *H. sabdariffa* could positively affect lipid profile in a paracetamol-induced hepatotoxicity, hence this study.

2. MATERIALS AND METHODS

2.1 Plant Materials

Fresh leaves of *H. sabdariffa* were purchased from Watt market in Calabar South, Cross River State, Nigeria. The leaves were authenticated by the Chief Botanist, Department of Botany, University of Calabar, Cross River State, Nigeria. 20 grams of the *H. sabdariffa* was weighed and grounded in an electric mill to obtain particles less than 2 mm. It was used to make an infusion by adding 1 liter of clean water and allowed to stand for 48 hours. The solution was filtered using Whatman’s No. 1 filter paper. The filtrate was stored in clean plastic containers and refrigerated. The extract was brought out of the refrigeration 2 hours to oral administration. The extraction was carried out according to the method of [14] with little modification.

2.2 Experimental Animals

Thirty (30) albino Wistar rats of both sexes weighing between 100-200 g from the start of the experiment were used for this study to determine the following: Total cholesterol concentration, LDL-c, HDL-c, TG, VLDL-c concentrations. They
were maintained in the animal facility of the Department of Physiology, University of Calabar, Nigeria, at a temperature of 30 ± 2°C and 12 h light/dark cycles. The rats were kept singly in improvised plastic metabolic cages with wire net covers. The rats were randomly assigned into three groups (A = control, B = paracetamol-treated group and C = paracetamol + aqueous leaf extract of H. sabdariffa-treated group). Each group consisted of ten rats. They were allowed free access to normal rat chow and clean drinking water. The paracetamol-treated group received intraperitoneal inducement of paracetamol (750 mg/kg body weight [15]. The paracetamol + extract of H. sabdariffa treated group received intraperitoneal inducement of paracetamol (750 mg/kg body weight) [15] and oral administration of aqueous leaf extract of H. sabdariffa (10 ml/kg body weight of rats). The animals in the control group were fed with only normal rodent chow and clean drinking water. Drug administration was done once daily for 3 weeks after which the blood samples were collected for analyses.

2.3 Preparation of Paracetamol Sample

The stock concentration of paracetamol was prepared by dissolving 750 mg of standard drug in 5 ml of distilled water bringing the stock concentration to 75 mg/mL. The dose used was 750 mg/kg body weight [15].

2.3.1 Preparation of animals for collection of blood samples

This was done by the method of [16] and used by [17].

2.3.2 Biochemical assays

Total cholesterol, LDL-cholesterol, HDL-cholesterol, Triglycerides was done using the laboratory procedure manual. Method: Hitachi 704 Analyzer serviced by Roche Diagnostics [18].

VLDL-cholesterol concentration

The concentration of very low density lipoprotein cholesterol was determined using lipoprotein electrophoresis and ultracentrifugation [19].

2.3.3 Determination of Plasma LDL-c for equation

\[\text{LDL-c} = \frac{(\text{Total cholesterol} - \text{Triglyceride} - \text{HDL-c})}{5} \]

2.4 Statistical Analysis

All results are presented as mean ± standard error of mean (SEM). The data were analyzed using a one-way analysis of variance (ANOVA) and \(p<0.05 \) was considered statistically significant [20].

2.4.1 Acknowledgement

All biochemical assays were carried out by Medchecks Diagnostic and Research Laboratory, Calabar, Cross River State, Nigeria.

3. RESULTS

Based on laboratory findings, the results of this research are expressed below.

3.1 Effect of Paracetamol and H. sabdariffa on TC Concentration

TC concentration in the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups are illustrated in Table 1. There was a significant decrease (\(p<0.05 \)) in TC concentration in the paracetamol + H. sabdariffa-treated group as compared to control and paracetamol-treated groups respectively.

<table>
<thead>
<tr>
<th>Group</th>
<th>TC (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.18 ± 0.04</td>
</tr>
<tr>
<td>paracetamol-treated</td>
<td>0.93± 0.04</td>
</tr>
<tr>
<td>paracetamol + H. sabdariffa-</td>
<td>0.45 ± 0.01</td>
</tr>
<tr>
<td>treated</td>
<td>***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM, \(n = 10 \). **p<0.05 vs. control***p<0.05 vs. control and paracetamol-treated groups

3.2 Effect of Paracetamol and H. sabdariffa on HDL-c Concentration

The HDL-c concentration in the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups are illustrated in Table 2. There was a significant decrease (\(p<0.05 \)) in HDL-c in the paracetamol + H. sabdariffa-treated group as compared to control.

3.3 Effect of Paracetamol and H. sabdariffa on TG Concentration

TG concentration in the control, paracetamol-treated and paracetamol + H. sabdariffa-treated
groups are illustrated in Table 3. There was a significant decrease ($p<0.05$) in TG concentration in the paracetamol + H. sabdariffa-treated group as compared to control and paracetamol-treated groups respectively.

Table 2. Comparison HDL-c concentration in rats between the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups

<table>
<thead>
<tr>
<th>Group</th>
<th>HDL-c (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.30 ± 0.01</td>
</tr>
<tr>
<td>paracetamol-treated</td>
<td>0.27 ± 0.01</td>
</tr>
<tr>
<td>paracetamol + H. sabdariffa-treated</td>
<td>0.23 ± 0.00***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM, $n = 10$, ***$p<0.05$ vs. control

3.4 Effect of Paracetamol and H. sabdariffa on VLDL-c Concentration

The VLDL-c concentration in the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups are illustrated in Table 4. There was a significant decrease ($p<0.05$) in VLDL-c concentration in the paracetamol + H. sabdariffa-treated group as compared to control and paracetamol-treated groups respectively.

Table 3. Comparison of TG concentration in rats between the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups

<table>
<thead>
<tr>
<th>Group</th>
<th>TG (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.72 ± 0.01</td>
</tr>
<tr>
<td>paracetamol-treated</td>
<td>0.61 ± 0.01***</td>
</tr>
<tr>
<td>paracetamol + H. sabdariffa-treated</td>
<td>0.50 ± 0.01***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM, $n = 10$, ***$p<0.05$ vs. control

Table 4. Comparison of VLDL-c concentration in rats between the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups

<table>
<thead>
<tr>
<th>Group</th>
<th>VLDL-c (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.33 ± 0.00</td>
</tr>
<tr>
<td>paracetamol-treated</td>
<td>0.23 ± 0.01***</td>
</tr>
<tr>
<td>paracetamol + H. sabdariffa-treated</td>
<td>0.13 ± 0.00***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM, $n = 10$, ***$p<0.05$ vs. control

4. DISCUSSION

Lipid profile/ lipid panel is a panel of blood tests [21,22] that serves as an initial screening tool for abnormalities in lipids [23] such as cholesterol [24] and triglycerides [25]. The results of this test can identify certain genetic diseases and can determine approximate risks for cardiovascular disease [26] certain forms of pancreatitis [27,28] and other diseases.

H. sabdariffa has been reported to possess lipid lowering activity that could prevent diseases like hyper-lipidemia and cardiovascular diseases [29,30,9]. In 2003, [31] had reported the anti-cholesterol action of H. sabdariffa in reducing serum concentration of TGs, TC and LDL-C. These reports corroborate our result findings.

The main constituents of H. sabdariffa L. relevant for its pharmacological study are organic acid, anthocyanins and flavonoids [10,32]. These properties highlight the antioxidant activity of H. sabdariffa extract.

In the present study, H. sabdariffa revealed hypolipidemic activity in paracetamol-induced hepatotoxicity. 750 mg/kg body weight of paracetamol and 10 ml/kg body weight of H. sabdariffa extract administered on rats caused significant reduction ($P<0.05$) in serum cholesterol level (Table 1), serum TG (Table 3), serum VLDL-C (Table 4), and serum LDL-C

3.5 Effect of Paracetamol and H. sabdariffa on LDL-c

The LDL-c concentration in the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups are illustrated in Table 5. There was a significant decrease ($p<0.05$) in LDL-c concentration in the paracetamol + H. sabdariffa-treated group as compared to control and paracetamol-treated groups respectively.

Table 5. Comparison of LDL-c concentration in rats between the control, paracetamol-treated and paracetamol + H. sabdariffa-treated groups

<table>
<thead>
<tr>
<th>Group</th>
<th>LDL-c (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.55 ± 0.03</td>
</tr>
<tr>
<td>paracetamol-treated</td>
<td>0.53 ± 0.03</td>
</tr>
<tr>
<td>paracetamol + H. sabdariffa-treated</td>
<td>0.46 ± 0.00***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM, $n = 10$, ***$p<0.05$ vs. control and paracetamol-treated groups
paracetamol is abused by users, the effect can inside the body. This implies that when required in high concentration property on the liver to boost the level of HDL. Sabdariffa could not also exert its antioxidant presence. The aqueous extract of Sabdariffa has a natural antioxidants free radical scavenging property and may not be able to ameliorate the challenge on the body. This should be seriously warned against.

5. CONCLUSION

The effect of H. sabdariffa on lipid profile level in a paracetamol-induced hepatotoxicity was investigated. Results from the findings showed that the aqueous extract of H. sabdariffa reduced levels of serum TG, VLDL-c, LDL-c despite challenge on the liver of cholesterol in the animal model. However, it was unable to produce significant effect on HDL concentration -very important cholesterol required in high level to maintain homeostasis inside the body this may be due to the challenge on the liver as a result of the paracetamol abuse. Conclusively, it may be adduced from the recent that the presence of bioactive constituents viz; anthocyanins, flavonoids, polyvenols and free radical scavenging properties in H. sabdariffa enabled a hypolipidemic effect on the animals despite challenge on the liver. However, it is recommended that future studies be undertaken to ascertain the mechanism of action of this extract as the scope of this study was limited to lipid profile level estimation.

CONSENT

It is not applicable.

ETHICAL APPROVAL

Permission was sought for, and obtained from the Faculty Animal Research Ethics Committee of the Faculty of Basic Medical Sciences for the study. The ethical approval number: FAREC-FBMS/20/2018

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

3. Tseng TH, Kao ES, Chu CY, Chou FP, LinWu HW and Wang CJ. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat
primary hepatocytes. Food and Chemical Toxicology. 1997; 35(12):1159-1164.

